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Abstract

The equations of motion of the particle trajectories within the framework of linear irrotational water
wave theory are a fully non-linear non-autonomous equations system for which no explicit solutions are
available. Recent developments done by A. Constantin et. al. show, using a non-autonomous variable
change and some phase-plane analysis, that the particle paths are not closed, but an actual net forward
displacement, termed Stokes drift, is to be found. In the present work these results are firstly presented
and discussed, and secondly extended into a more general model. After that, the same technique is used
to find similar non-autonomous differential equations systems which do have periodic orbits.
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Chapter 1

Introduction

“...the wave flees the place of its creation, while the water does
not; like the waves made in a field of grain by the wind, where
we see the waves running across the field while the grain re-
mains in its place.”

Leonardo da Vinci

Waves count among the most studied phenomena both in mathematics and in physics. It is a widely
known fact that when we throw a stone in a lake or watch the surface waves on the sea, contrarily to
what appears to us, it is not water what we see traveling, but only a shape pattern, a disturbance that
propagates through it. In other words, the rapid motion of a wave is the product of a much slower motion
of the substance through which it travels. We will restrict our attention to gravitational water waves,
which are waves formed in water under a constant gravitational force.

The propagation of such waves can be described to a great accuracy without major problems. However,
the equations of motion of each fluid particle constitute a fully non-linear non-autonomous ordinary
differential equations system for which explicit solutions are not available. It is known that the fluid
particles move slightly upwards and downwards, forwards and backwards, as the wave passes through
them, but other aspects like whether their trajectories, or particle paths, are closed or not, are more
difficult to answer. A classical approach to this problem, to be found in most books on fluid mechanics
(cf. [1], [10], [12] and [16]), is to linearize the governing equations, obtaining elliptic and circular closed
paths -depending on the boundary conditions-, degenerating at the sea bottom. However, G. G. Stokes
already observed in 1847 that [17]:

“It appears that the forward motion of the particles is not altogether compensated by their
backward motion; so that, in addition to their motion of oscillation, the particles have a pro-
gressive motion in the direction of propagation of the waves.”

Recent developments on the subject done by A. Constantin et. al. (cf. [3], [4], [7] and [8]) show
that Stokes was right indeed, so there is an actual net forward displacement, termed Stokes drift. This
modern approach is based on a smart variable change, which makes the equations system autonomous,
thus letting phase-plane analysis techniques be used. The system can be shown to have no periodic orbits
unless the surface is flat, so there are no closed particle paths.
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1. Introduction

The aim of this work is double: on the one hand, to present and examine such recent developments
for irrotational water waves, both in the case of finite-depth water and of deep-water waves. On the other
hand, to extend the main results to a more general system, as well as to see whether the same technique
can be used to find similar non-autonomous equations systems for which there are indeed periodic orbits.

The work is structured as follows. In Chapter 2 the main mathematical model is presented. We shall
permit us to start with a review of some basic notions of fluid dynamics and continue by setting out
appropriate boundary conditions. We end by doing a non-dimensionalization and rescaling of variables,
restricting us to the linear water waves regime. In Chapter 3 the developments of Constantin et. al.
are presented and examined. We derive a fluid velocity field, we discuss the classical approach and we
introduce the variable change. We also reproduce the phase-plane analysis and enunciate and prove the
main results, both for finite-depth and deep-water. Chapter 4 contains all the original work and is divided
in two sections. In the first we bring together the two situations as particular cases of a more general
system depending on an arbitrary function fulfilling certain conditions and we extend the previous results
to this system. In particular we show that there is a forward drift and that it is strictly decreasing with
depth. In the second we look for similar non-autonomous systems, which can be shown to have periodic
orbits using the same technique. We give three examples: one with a constant in depth but still positive
forward drift, one for which existence of periodic orbits can be proven, and one for which all orbits are
periodic.
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Chapter 2

Notions of Hydrodynamics

“Mathematicians are like Frenchmen: whatever you say to
them they translate into their own language and forthwith it is
something entirely different.”

J. Wolfgang von Goethe

In this chapter the mathematical model for our study of gravitational water waves is going to be set.
As a starting point, we will deduce the basic equations of inviscid fluid mechanics -namely the equation of
mass conservation and Euler’s equations of motion- from general principles, as well as adapt them to the
analysis of water waves through some assumptions and simplifications -which will select the water-wave
problem from all other possible solutions of the equations-. Following this, convenient boundary condi-
tions will be stated so that our calculations become realistic and a non-dimensionalisation and scaling of
variables is going to be made for easier mathematical manipulation.

2.1 The Governing Equations of Fluid Mechanics

We may start with some general considerations about fluid dynamics. If the reader is already familiar
with it, we suggest to skip to §2.2. A fluid is normally defined as a material which flows (cf.[16]), but
that is somehow too general to start a rigorous study with. In this work we are going to deal with liquids
-actually almost exclusively with water -, which of course is matter and therefore essentially constituted
by molecules, atoms, etc. As a consequence, one could think that any possible description of the motion
and interaction with external forces of the fluid must involve quantum-mechanical methods, as well as
take into account that most of the mass is condensed in the atomic nuclei and therefore almost all the
space occupied by the fluid is empty.

However, this considerations become only important at a microscopic level -dimensions around 1Å=
10−10 m- or smaller, and since we will be dealing with much bigger dimensions we may ignore this dis-
crete character of matter -which is studied in quantum and statistical mechanics- and regard the fluid as
being a continuum. That is the so called continuum hypothesis. We are therefore going to study the av-
erage manifestation of molecular forces, and describe only the macroscopic or gross behaviour of the fluid.
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2. Notions of Hydrodynamics

As a consequence of this, we are going to take a fixed Cartesian reference frame, and describe the
state of the fluid through continuous functions of position x ≡ (x, y, z) and time t -y is taken to point
upwards-, which are the only independent variables. For example the pressure function P (x, t), which
describes the average force per unit area exerted to the boundaries of a volume of liquid due to the con-
stant collisions of molecules. Another important example is the density function ρ(x, t), which describes
the mass distribution per unit volume.

2.1.1 Fluid description

The main goal of fluid dynamics is to be able to fully describe the state of the fluid, that is, to know all
its properties -like the pressure or the density- at every point x and at every time t. In this work we will
not only assume that these functions are continuous but also of class C1.

One of the most important properties of a fluid state is the fluid velocity u ≡ (u, v, w), which of course
is a function u = u(x, t) -and therefore a time-dependent vector field-. This field is usually represented by
streamlines, which are lines tangent to the fluid velocity at every point. In particular, if u(x, t) changes
with time, so do the streamlines. Another important definition is:

Definition 2.1 (Particle path). Let us consider a fluid particle -an infinitesimally small volume of
liquid- which at time t0 is at some point x0. Then its particle path x(t) is defined as the trajectory
described by the fluid particle as time goes on, that is, the solution of the initial value problem

d

dt
x(t) = u(x(t), t)

x(t0) = x0.

(2.1)

We observe that if the fluid velocity field does not change with time, u(x, t) = u(x) -which is called
steady flow -, then the particle paths and the streamlines coincide. The concept of particle path, as well
as their properties -whether they are closed or not, their shape, their periodicity...- is going to be the
main topic of this work, as we said in the introduction.

Given a fluid property f(x, t), we may be interested in its time evolution. The first temptation would
be to simply calculate ∂f

∂t , but this will only give us the evolution of this property in a fixed space point.
Since the water occupying this fixed space point changes continuously, in most cases the information we
are going to get will not be the one we are looking for -let us consider for example that we are analysing
the effect of some force acting on the fluid-. The concept of particle path lets us solve this problem
through the following mathematical tool:

Definition 2.2 (Material derivative). Given a fluid property f = f(x, t), we define its total or
material derivative as

Df

Dt
:=

df(x(t), t)

dt
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t
+
∂f

∂t
= ∇f · u +

∂f

∂t
,

which gives us the evolution of f on a fixed particle fluid -since we take the particle path as the spacial
variable-. Sometimes this derivative is regarded as the “derivative following the fluid”.

For example, fluids like water are regarded to be inviscid (cf. [10]), which means that the density of
the fluid does not change with time, that is,

Dρ

Dt
= 0. (2.2)
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2. Notions of Hydrodynamics

2.1.2 Mass conservation

Now we are going to derive the equation of mass conservation for a fluid, which can be found in any text
on fluid mechanics (cf. [1], [10], [12], [16]). Let us imagine an arbitrary volume V within the fluid, fixed
with respect to our reference frame and bounded by a closed surface ∂V . One the one hand, since V is
fixed, the fluid in motion may cross the surface ∂V , both inwards and outwards, so that if the rate of
change of mass in V is given by

d

dt

∫
V

ρ dV,

where ρ = ρ(x, t) represents the density and dV = dx dy dz is the element of volume. On the other hand,
the amount of water entering V is given by

−
∮
∂V

ρu · n dS,

where n is the normal vector pointing outwards of ∂V and dS is the element of surface. Assuming that
no liquid is created or destroyed in any point, we must have

d

dt

∫
V

ρ dV = −
∮
∂V

ρu · n dS. (2.3)

Using Gauss’ divergence theorem, together with the fact that ρ ∈ C1 and V is fixed -no time dependence-,
we may rewrite (2.3) as

d

dt

∫
V

ρ dV +

∫
V

∇ · (ρu) dV = 0 −→
∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0. (2.4)

Since V was arbitrary, for (2.4) to be true for every V , we must have

∂ρ

∂t
+∇ · (ρu) = 0

which is called continuity equation. Using now the vector identity ∇ · (ρu) = ρ(∇ · u) + ∇ρ · u, the
following holds

Dρ

Dt
+ ρ (∇ · u) = 0.

Finally, if the fluid in inviscid -equation (2.2)-, we get

∇ · u = 0, (2.5)

which is known as the equation of mass conservation for inviscid fluids, and is totally independent of
whether the flow is steady or not.

2.1.3 Euler’s equations of motion

Until now, we have only stated some properties of the fluids’ velocity field, but no dynamics have been yet
described, that means, no considerations on the causes of the fluids’ movement have been made. Fluid
dynamics can be regarded as classical physics, and thus its dynamics are deterministically described by
Newton’s second law,

F = ma, (2.6)
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2. Notions of Hydrodynamics

where F is the net external force, m is the mass and a is the acceleration. But how does actually equation
(2.6) apply to a fluid?

Consider now, as we did before, an arbitrary volume V within the fluid, and its boundary closed
surface ∂V . On the one hand, the force exerted by the surrounding fluid across any surface element δS
is, by the definition of pressure, Pn δS, where n is again the outward normal vector. Thus, the net force
exerted on V is

−
∮
∂V

P n dS = −
∫
V

∇P dV,

where the gradient theorem was used. Since we are going to deal exclusively with gravity waves -waves
formed by the presence of a constant gravitational force P = mg, being g = (0,−g, 0) the gravitational
acceleration constant-, no other forces are to be considered.

On the other hand, the acceleration on a fluid is understood as the acceleration of every fluid element,
that is, Du

Dt . Therefore, equation (2.6) applied to V is∫
V

ρg dV −
∫
V

∇P dV =

∫
V

ρ
Du

Dt
dV −→

∫
V

(
Du

Dt
+

1

ρ
∇P − g

)
dV = 0,

and as we did before, this implies that

Du

Dt
+

1

ρ
∇P − g = 0,

which is known as the Euler’s equations of motion.

Combining the two main equations of this section in an explicit form we have
ut + uux + vuy + wuz = − 1

ρPx

vt + uvx + vvy + wvz = − 1
ρPy − g

wt + uwx + vwy + wwz = − 1
ρPz

ux + vy + wz = 0,

(2.7)

where the subindices stand for partial derivatives.

2.2 Boundary Conditions

We may now set out the boundary conditions for our problem. As we already said, we will be dealing
with gravity water waves. We are going to study their behaviour far away from the coast. Moreover,
we will only consider two-dimensional waves: that is, we let x point in the direction of propagation of
the wave -perpendicular to the crest line- and y upwards, and we consider that there is no difference in
the behaviour along the z axis so this dimension can be eliminated from our analysis (x = (x, y)), that
means, only one cross-section of the flow will be taken into account, assuming that all of them look the
same.

Our typical scenario is depicted in Fig. 2.1. The average height is denoted by b and the actual
shape variation is given by a function η(x, t) so that the interface between water and air is going to be
y = η(x, t) + b. We define the fluid domain as

D := { (x, y) ∈ R2 | a < y ≤ η(x, t) + b }.
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2. Notions of Hydrodynamics

λ

a

b

h

C

y = η(x, t) + b

y

x

Figure 2.1: Cross-section of the flow. The wave propagates in the positive direction of x.

Dynamic boundary condition

Since the changes in pressure of the air lying above the fluid domain do not have a relevant effect on
the fluid motion, we decouple the motion of the former and the latter through the dynamic boundary
condition

P = Pat on y = η(x, t) + b, (2.8)

where Pat stands for the atmospheric pressure and is taken to be constant.

Kinematic boundary conditions

The fluid domain boundary ∂D consists of two disjoint parts: the free surface and the bed. We want the
particles lying in these two parts to stay there all the time. This means that the material derivative of
each part’s defining equations must cancel, which leads to the kinematic boundary conditions:

• Free surface: The defining equation is S1(x, t) = 0 where S1(x, t) := y − η(x, t)− b. Thus:

D

Dt
S1(x, t) = 0 −→ v = ηt + uηx on y = η(x, t) + b.

• Bed: The defining equation is Ss(x, t) = 0 where Ss(x, t) := y − a. Thus:

D

Dt
S2(x, t) = 0 −→ v = 0 on y = a.

2.3 Non-Dimensionalisation and Scaling of the Variables

In this section we are going to adapt the governing equations (2.7) and the boundary conditions (2.8),(2.9)
for a better mathematical handling, following mostly [3], [4], [5]. First of all we are going to non-
dimensionalise them in order to get rid of most constants, and after that we will scale them in terms of
two typical parameters which will lead us to a final linearisation of the equations.
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2. Notions of Hydrodynamics

2.3.1 Non-Dimensionalisation of the variables

Density

According to J. Lighthill (cf. [14]), the water density in seas, lakes and oceans is a function only of the
pressure, the temperature and the salinity, but the first two account only for a 0.5%, 0.2% of variation
and the third one up to 4% in big oceans, so in this work we may regard it as a constant. Actually, for
the sake of simplicity we will further take ρ = 1.

Pressure

Since we are dealing with liquids, and in particular with gravity waves, we must take into account the
effects of gravity on the fluid pressure. If the fluid were to be at rest, the pressure distribution due to
gravity g would be given by the well-known hydrostatic pressure distribution expression ([12] and many
others)

dPh
dy

= −ρ g = −g,

which together with the boundary condition P = Pat at y = b leads to: Ph = Pat + g(b − y). Thus, if
we want to take into account only the effects of fluid motion relative to the hydrostatic scenario, we may
define a non-dimensional pressure p so that

P (x, t) = Ph(y) + p b y = Pat + g (b− y) + g h p,

where h := b− a. The factor g h of p is actually not necessary, but will be helpful when we apply further
non-dimensionalisations.

Longitudinal variables

h is the typical or average depth. Similarly, we let λ be the typical wavelength and C the typical wave
amplitude. We redefine

x 7→ λx y 7→ hy η 7→ Cη (2.10)

where this is to be understood as “where we used to write x we shall now write λx”, so that (x, y) will
now be non-dimensionalised.

Speed and time variables

The fact that for water of a given depth h the greatest possible wave speed is
√
gh (cf. [10], [14]) suggests

also a natural scale for non-dimensionalising the speed variable u (corresponding to direction x) and
consequently a time scale λ/

√
gh. Special care must be taken with the vertical velocity v so that the

mass conservation equation (2.5) remains valid, since now the spacial derivatives will also be scaled and
the scale for each direction is different. At the end of the day we will have

u 7→
√
gh u v 7→ h

√
gh

λ
v t 7→ λ√

gh
t. (2.11)
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2. Notions of Hydrodynamics

2.3.2 Scaling the governing equations

After the non-dimensionalisation our system of equations (2.7), together with the boundary conditions
(2.8),(2.9), becomes: 

ut + uux + vuy = −px
δ2(vt + uvx + vvy) = −py

ux + vy = 0

p = εη on y = b̃+ εη

v = ε(ηt + uηx) on y = b̃+ εη
v = 0 on y = ã,

(2.12)

where the following constants are defined,

δ :=
h

λ
ε :=

C

h
ã =

a

h
b̃ =

b

h
.

The constants ã, b̃ correspond simply to the depth and mean flat surface height after the non-dimensio-
nalisation of y. The constant ε is called the amplitude parameter and δ is the shallowness parameter.
These two parameters have a concrete physical meaning:

1. The amplitude parameter ε: It gives us information on how “big” the waves are, that is, how
relevant the changes in time due to the surface wave η(x, t) are in comparison to the total depth.
In this work we will think of the limit ε → 0, which is called linear water waves, and corresponds
to a “small disturbance of the underlying flow” (cf. [7]).

2. The shallowness parameter δ: It tells us the relative importance of the wavelength in comparison to
the typical height. We may distinguish between long or shallow waves, with δ → 0, and deep-water
waves, with δ →∞.

In particular, they help us select the important terms of equations (2.12) and neglect the small ones.
We will first do the following scaling :

p 7→ εp u 7→ εu v 7→ εv

so that equations (2.12) shall become:

ut + ε(uux + vuy) = −px
δ2[vt + ε(uvx + vvy)] = −py

ux + vy = 0

p = η on y = b̃+ εη

v = ηt + εuηx on y = b̃+ εη
v = 0 on y = ã.

(2.13)

Finally, we linearise the equations by letting ε→ 0 and therewith obtain:

ut = −px
δ2vt = −py

ux + vy = 0

p = η on y = b̃

v = ηt on y = b̃
v = 0 on y = ã.

(2.14)
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Chapter 3

Particle paths in linear water waves

“What we know is a drop, what we do not know is an ocean.”

Sir Isaac Newton

In this chapter we will present and examine the recent developments done by A. Constantin, M.
Ehrnström and others. We will first look for travelling solutions of the governing equations derived in
the previous chapter (2.14) in two different cases:

• Finite-depth water waves

• Deep-water waves

assuming in both cases irrotationality -absence of vorticity-. Under travelling solution we understand
solutions as waves travelling at some speed c > 0, that is, with an (x, t)-dependence in the form x − ct.
Consequently, after the non-dimensionalisation and scaling of variables done in §2.3, it may be logical to
take as an Ansatz that the surface waves are of period one, that is η(x, t) = cos[2π(x− ct)], which corre-
sponds to the fundamental Fourier mode. We will compare the classical results (to be found in any book
on fluid mechanics, like [1], [10], [12], [16]) with the results of A. Constantin et. al. (cf. [3], [4], [7], [8]).

3.1 Finite-depth water waves

This section deals with the simplest physical situation (see Fig. 2.1), namely with h <∞ and irrotational
water (see below). For simplicity we will take a = ã = 0 and b = h so b̃ = 1. Let us first introduce the
concept of vorticity.

3.1.1 The concept of vorticity

We define the vorticity as follows:

Definition 3.1 (Vorticity). Given a fluid flow and let u be its velocity field, we define the vorticity as

ω := ∇∧ u.

In particular, if the flow is two-dimensional, u(x, t) = (u(x, y, t), v(x, y, t), 0) and ω = (0, 0, ω) where

ω = vx − uy.

13



3. Particle paths in linear water waves

A flow is called irrotational if ω = 0.

From a physical point of view, the vorticity represents “twice the average angular velocity of two
short fluid line elements that happen, at that instant, to be mutually perpendicular” (cf.[1]). It is however
important to make clear that it only refers to the local spin or whirl of the fluid. A typical example of
this is the following: consider a two-dimensional flow confined in a ring r1 < r < r2, where (r, ϕ) refer
to the polar coordinates, with velocity field u = Cr−1eϕ, C a constant. Then although the global fluid
motion consists of a rotation around the centre of the ring, the vorticity is

ω = ∇∧ u = (0, 0, ω) where ω =
1

r

∂

∂r
(ruϕ)− 1

r

∂ur
∂ϕ

= 0,

so it is an irrotational flow.

Concerning the physical relevance of the assumption of irrotationality in water waves, according to
[14] if the waves enter a region of still water, the assumption is realistic. Moreover, the following result
applies:

Theorem 3.2 (Cauchy-Lagrange). Let an inviscid, incompressible fluid of constant density move in
the presence of a conservative conservative body force (for example gravity). Then if a portion of the fluid
is initially in irrotational motion, that portion will always be in irrotational motion.

This theorem, which is a consequence of Kelvin’s circulation theorem (cf. [1]), implies that all initially
irrotational flow will remain irrotational at all times, and therefore it makes sense to study this particular
case.

3.1.2 Fluid velocity field

Proposition 3.3. A solution of the system (2.14) for irrotational finite-depth water is

u(x, y, t) =
2πcδ

sinh (2πδ)
cosh (2πδy) cos [2π(x− ct)]

v(x, y, t) =
2πc

sinh (2πδ)
sinh (2πδy) sin [2π(x− ct)]

p(x, y, t) =
1

cosh (2πδ)
cosh (2πδy) cos [2π(x− ct)]

(3.1)

where

c2 =
tanh (2πδ)

2πδ
.

Proof. Throughout this work we will assume that every function is regular enough for Schwartz’s theorem
to apply. We start by looking at the boundary condition v = ηt on y = 1, which suggests a function v of
the form v(x, y, t) = F (y) sin[2π(x − ct)]. Deriving now the equation ut = −px with respect to x and y
we get utxy = −pxxy. On the one hand, since ux + vy = 0, we have utxy = −vtyy. On the other hand,
deriving the equation δ2 = −py with respect to x twice we get δ2vtxx = −pyxx = −pxxy. Thus, we obtain
δ2vtxx = −vtyy. Applying this to our v(x, y, t) leads to

δ2c(2π)3F (y) cos[2π(x− ct)] = 2πcF ′′(y) cos[2π(x− ct)]

so
F ′′(y)− (2πδ)2F (y) = 0, (3.2)

14



3. Particle paths in linear water waves

which has the well-known general solution F (y) = C1e
2πδy + C2e

−2πδy.

The boundary condition v = 0 on y = 0 implies C2 = −C1, so we may write v(x, y, t) = 2C1 sinh(2πδy)×
sin[2π(x− ct)], and from v = ηt on y = 1 we must have

2C1 sinh(2πδ) sin[2π(x− ct)] = 2πc sin[2π(x− ct)] −→ C1 =
πc

sinh(2πδ)

so

v(x, y, t) =
2πc

sinh(2πδ)
sinh(2πδy) sin[2π(x− ct)].

From ux + vy = 0 we can find u as follows:

u(x, y, t) = −
∫
vy dx = −

∫
(2π)2cδ

sinh(2πδ)
cosh(2πδy) sin[2π(x− ct)] dx

=
2πcδ

sinh(2πδ)
cosh(2πδy) cos[2π(x− ct)].

Similarly, from ut = −px we get:

p(x, y, t) = −
∫
ut dx = −

∫
(2πc)2δ

sinh(2πδ)
cosh(2πδy) sin[2π(x− ct)] dx

=
2πc2δ

sinh(2πδ)
cosh(2πδy) cos[2π(x− ct)].

Finally, the boundary condition p = η on y = 1 implies

2πc2δ

sinh(2πδ)
cosh(2πδ) cos[2π(x− ct)] = cos[2π(x− ct)] −→ c2 =

tanh(2πδ)

2πδ

and p can be rewritten as

p(x, y, t) =
1

cosh (2πδ)
cosh (2πδy) cos [2π(x− ct)].

As a consequence,

Corollary 3.4. If we reverse the changes introduced in §2.3, the functions in (3.1) can be written as

η(x, t) = εh cos(kx− Ωt)

u(x, y, t) = εΩh
cosh(ky)

sinh(kh)
cos(kx− Ωt)

v(x, y, t) = εΩh
sinh(ky)

sinh(kh)
sin(kx− Ωt)

P (x, y, t) = Pat + g(h− y) + εgh
cosh(ky)

cosh(kh)
cos(kx− Ωt)

in terms of the physical variables, where

k =
2π

λ
Ω =

√
gk tanh(kh).

15



3. Particle paths in linear water waves

Corollary 3.5. The speed c of the linear wave is thus given by

c =
Ω

k
=

√
g

tanh(kh)

k
(3.3)

and the period T by

T =
2π

ω
=

2π√
gk tanh(kh)

.

This corollary gives us another physical insight into the meaning of the shallowness parameter δ. For
long or shallow waves, δ = h/λ→ 0 so λ→∞ -that is why they are called long-, and therefore T →∞.
In this case, the wave speed c tends to

√
gh. However, for deep-water waves, that is when δ →∞, δ →∞

too -that is why it is called deep-water -, the wave speed tends to
√
gk =

√
gλ

2π
as we will see in the next

section.

Now that the fluid velocity field u(x, t) is completely known, we may start analysing what the particle
paths look like. We recall that the particle paths are going to be the solutions (x(t), y(t)) of the system
(2.1), which in this case will be 

dx

dt
= M cosh(ky) cos(kx− Ωt)

dy

dt
= M sinh(ky) sin(kx− Ωt)

(3.4)

where

M =
εΩh

sinh(kh)
, (3.5)

for a given initial condition (x0, y0). The smoothness of the right-hand side, together with the fact that it
is a bounded function -since y is bounded- guarantees the existence of a unique global solution (cf.[18]).

3.1.3 Classical particle paths

The classical approach to solve (3.4) consists of using approximations in terms of M , which is considered
to be small in the limit of linear water waves (ε→ 0):

dx

dt
= M cosh(ky0) cos(kx0 − Ωt) +O(M2)

dy

dt
= M sinh(ky0) sin(kx0 − Ωt) +O(M2)

(3.6)

where O(M2) denotes terms of order M2 or higher. Neglecting these, and integrating with respect to
time we find 

x(t) ' x0 −
M

Ω
cosh(ky0) sin(kx0 − Ωt)

y(t) ' y0 +
M

Ω
sinh(ky0) cos(kx0 − Ωt).

(3.7)

The reader may recognize this result as the expression of an ellipse of horizontal semi-axis Lx =
M
Ω cosh(ky0), vertical semi-axis Ly = M

Ω sinh(ky0) and centre (x0, y0). This means that up to a first-order
approximation in M the particle paths are ellipses whose dimensions decrease, and flatten with depth:
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3. Particle paths in linear water waves

Ly/Lx = tanh(ky0) → 0 as y → 0. In particular, for y = 0 they are straight horizontal lines (see Fig.
3.1). Another important observation is that the distance between their foci is

d = 2

√
Lx

2 − Ly2 = 2

√(
M

Ω
cosh(ky0)

)2

−
(
M

Ω
sinh(ky0)

)2

=
2M

Ω

which remains constant with height.

h

0

2M
Ω

Figure 3.1: Particle paths in the first-order approximation. The dimensions of the ellipses decrease with the depth

while the distance between foci is maintained.

3.1.4 A non-autonomous variable change

In the classical approximative approach that we have presented, particle paths are closed, or more precisely
they are periodic orbits of the non-autonomous dynamical system (3.4). This has been the paradigm of
linear water waves for many years, but in 2008 A. Constantin and G. Villari suggested in a paper1

([4]) a totally different approach based on the time-dependent variable change

X(t) := kx(t)− Ωt Y (t) := ky(t) (3.8)

which transforms system (3.4) into
dX

dt
=
∂X

∂x

dx

dt
+
∂X

∂t
= kM cosh(Y ) cos(X)− Ω =: A(X,Y )

dY

dt
=
dY

dy

dy

dt
= kM sinh(Y ) sin(X) =: B(X,Y ),

(3.9)

which is not only autonomous, but also Hamiltonian:
dX

dt
= HY

dY

dt
= −HX ,

(3.10)

1The paper was actually written in 2005 during the attendance of both authors to the program “Wave Motion” at the
Mittag-Leffler Institute in Stockholm, but was not actually published until 2008.
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3. Particle paths in linear water waves

where
H(X,Y ) = kM sinh(Y ) cos(X)− ΩY, (3.11)

so not only most of the tools from the qualitative theory of differential equations ([6], [15], [18]), but
also from geometry ([2]) become available. In this work we will say that (3.4) and (3.9) are conjugated
systems through the variable change (3.8).

The physical interpretation of the variable change (3.8) is, apart from a scaling, the transformation of a
linear variable into a phase. This change is equivalent to a Galilean transformation of the reference frame
with the constant velocity being that of the wave solution of the fluid velocity field. Since both A(X,Y )
and B(X,Y ) are 2π-periodic in the first variable, we can restrict our phase plane to the half-cylinder

D := { (X,Y ) ∈ R2 | − π ≤ X ≤ π, 0 ≤ Y <∞} = C1 × [0,∞),

where C1 is the unit circle. Moreover, since A(X,Y ) is even in X and B(X,Y ) is odd, the system has
mirror symmetry with respect to X = 0. We are now going to do a phase plane analysis of (3.9).

0- and ∞-isoclines

Definition 3.6. The 0-isocline (∞-isocline) is the geometrical place of the points in D where the slope
of the orbits is horizontal (vertical).

Interpreting (3.9) as a vector field, the 0-isocline is characterized by the equation

B(X,Y ) = kM sinh(Y ) sin(X) = 0,

whose solutions are the lines X = 0,±π and Y = 0 (see Fig. 3.2, colour green). This divides the cylinder
into two equal regions -apart from the 0-isocline, which has zero measure-, one with X ∈ (−π, 0), where
the vector field goes downwards, and the other with X ∈ (0, π) where the field goes upwards. In a similar
way, the ∞-isocline is characterized by

A(X,Y ) = kM cosh(Y ) cos(X)− Ω = 0. (3.12)

Since all the constants are positive, this equation has no solutions for |X| ≥ π/2 because then cos(X) ≤ 0.
For X ∈ (−π/2, π/2), equation (3.12) implicitly defines a curve (X,Y ) = (X, γ(X)) where

γ(X) := arccosh

(
Ω

kM cos(X)

)
.

The main features of this function are that it is even, γ(X) → +∞ when X → ±π/2 and its image is
[Y ∗,∞) with Y ∗ =arccosh(Ω/kM) > 0. This curve is represented in Fig. 3.2 with colour blue. It also
divides D into two regions, this time unequal, such that above the curve the field goes to the right, and
below to the left.

Phase-portrait

The confection of the phase-portrait of (3.9) is straightforward: the fact that the system is Hamiltonian
implies that the function (3.11) is constant along the trajectories

dH

dt
=
∂H

∂X

dX

dt
+
∂H

∂Y

dY

dt
=
∂H

∂X

∂H

∂Y
− ∂H

∂Y

∂H

∂X
= 0,

and therefore they are contained into the level sets of H(X,Y ). But since the system is two-dimensional,
these level sets are curves, so they coincide with the trajectories. We recall some useful concepts and
results of differentiable functions (cf. [2]):
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3. Particle paths in linear water waves

Definition 3.7 (Hessian matrix ). Given an open set D ⊆ Rn and a smooth function H : D → R of
class C2, we define the Hessian matrix of H in the point P ∈ D as

HH(P ) =


Hx1,x1

Hx1,x2
· · · Hx1,xn

Hx2,x1
Hx2,x2

· · · Hx2,xn

...
...

. . .
...

Hxn,x1
Hxn,x2

· · · Hxn,xn


∣∣∣∣∣∣∣∣∣
P

.

Definition 3.8 (Singular point). Given an open set D ⊆ Rn and a smooth function H : D → R of
class C2, we say that a point P ∈ D is singular if ∇H(P ) = 0. Moreover, we say that P is degenerate if
det(HH(P )) = 0 and non-degenerate if not. If ∇H 6= 0 we say that P is regular.

Theorem 3.9 (Morse’s lemma). Given an open set D ⊆ Rn and a smooth function H : D → R
of class C2, let P ∈ D be a singular and non-degenerate point. Then there exists a coordinate system
(x1, x2, . . . , xn) in a neighbourhood U ⊂ D of P such that

H(Q) = H(P )− x1
2(Q)− ...− xk2(Q) + xk+1

2(Q) + ...+ xn
2(Q), ∀Q ∈ U,

where k is the number of eigenvalues of HH(P ) with negative real part. In other words, the function H
will be locally equivalent to

x 7→ F (P )− x1
2 − ...− xk2 + xk+1

2 + ...+ xn
2.

In particular, for n = 2 there are only three possibilities:

• H(x) = H(P )− x1
2 − x2

2

• H(x) = H(P ) + x1
2 + x2

2

• H(x) = H(P )− x1
2 + x2

2.

In the first two cases the level curves of H in U will be diffeomorphically equivalent to circles, and P will
be a maximum and a minimum of H respectively. In the third case, we say that P is a saddle point.

From definition 3.8 it is clear that the singular points are precisely the intersections of the two isoclines.
In this case, there is only one singular point, P = (0, Y ∗). If we calculate the Hessian matrix of H in this
point:

HH(P ) =

(
HXX HXY

HY X HY Y

)∣∣∣∣
P

=

(
−kM sinh(Y ∗) 0

0 kM sinh(Y ∗)

)
,

so P is non-degenerate and trivially has the eigenvalues ±kM sinh(Y ∗). From theorem 3.9, since k = 1, P
is a saddle point. The curves implicitly given by H(X,Y ) = H(P ) are called separatrices and divide the
phase plane D into four regions with trajectories of qualitatively different behaviour (see Fig.3.2, colour
red).

Since we are only interested in the physically realistic trajectories -that is, the ones that do not diverge
at any point-, we must impose that the singular point is higher than the water height. Recalling the
multiple variable changes, this condition may be expressed as:

Y ≤ Y ∗ −−−→
(3.8)

ky ≤ k(h+ C) = kh(1 + ε) ≤ Y ∗ −−−→
(3.5)

(3.13)

kh ≤ kh(1 + ε) ≤ arccosh

(
1

ε

sinh(kh)

kh

)
−→ cosh(kh) ≤ 1

ε

sinh(kh)

kh
(3.14)
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3. Particle paths in linear water waves

so the actual requirement is

ε ≤ tanh(kh)

kh
,

which is coherent with the linear water waves limit (ε→ 0).

Figure 3.2: Phase portrait of the system (3.9). The 0-isocline and ∞−isocline are represented in green and blue

respectively. Their intersection is the singular point P0. The red lines correspond to the separatrices, which divide

the phase space into qualitatively different regions. We are only interested in the lower one, where the trajectories

go from X = π to X = −π.

3.1.5 Main results

We are now in conditions to present the two main results of this approach:

Lemma 3.10. Let (π, β) be the intersection point of the lowest separatrix with the line X = π, and
Yπ ∈ [0, β). Let also (X(t), Y (t)) be the solution of (3.9) with initial condition (X(0), Y (0)) = (π, Yπ)
and T = T (Yπ) the time needed for this solution to intersect the line X = −π. Then the phase trajectory
(X(t), Y (t)) corresponds -reversing the variable change (3.8)- to a periodic solution of (3.4) if and only
if

T (Yπ) =
2π

Ω
.

Proof. We stated before that the system (3.9) has mirror symmetry with respect to the line Y = 0. Thus,
the phase trajectory (X(t), Y (t)) will intersect the line X = −π at the point (−π, Yπ), so Y (T ) = Yπ.
This means that reversing (3.8), we have y(T ) = y(0).

Let us start supposing that T (Yπ) =
2π

Ω
. Since the system (3.4) is non-autonomous, for a trajectory

to be T -periodic two conditions must be fulfilled: that after a time T the system is in the same point,
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3. Particle paths in linear water waves

(x(T ), y(T )) = (x(0), y(0)) and that the r.h.s of (3.4) evaluated at time t = T is the same as at time
t = 0. Indeed:

x(T )− x(0) =
X(T ) + ΩT

k
− X(0)

k
=
−π + 2π

k
− π

k
= 0

and
[kx(T )− ΩT ]− [kx(0)− Ω0] = [X(T ) + ΩT − ΩT ]−X(0) = −π − π = −2π,

which fulfils the condition because there are only 2π-periodic functions in kx− Ωt involved.

Conversely, let us now assume that there is a periodic solution of (3.4) of period τ > 0. We know that
y(τ) = y(0) and thus Y (τ) = Y (0) so τ = nT for some n ∈ N. We also know that x(τ) = x(nT ) = x(0)
so X(τ) = X(0)− Ωτ = X(0)− nΩT . That implies

0 = X(τ)−X(0) + nΩT = X(nT )−X(0) + nΩT = (1− 2n)π − π + nΩT = −2nπ + nΩT

so

T =
2π

Ω
.

The function T will be called period function throughout this work, although this name is sometimes
used for other functions in the literature. The main result of [4] is:

Theorem 3.11. There are no periodic orbits in (3.4).

Proof. Using the previous lemma it suffices to prove that ∀Yπ ∈ [0, β), T (Yπ) >
2π

Ω
. We will show this

in two steps:

• T (0) >
2π

Ω
.

• For Yπ ∈ (0, β], T (Yπ) > T (0).

Starting with Y (0) = 0, we see that dY/dt = B(X,Y ) = B(X, 0) = 0 so Y = 0 ∀t. Thus, the only
variations are in X. We have

dX

dt
= kM cos(X)− Ω −→ T (0) =

∫ −π
π

dX

kM cos(X)− Ω
=

∫ π

−π

dX

1− µ cos(X)

where

µ =
kM

Ω
=

kεΩh

Ω sinh(kh)
= ε

kh

sinh(kh)
≤ tanh(kh)

kh

kh

sinh(kh)
=

1

cosh(kh)
< 1.

Doing now the variable changes u = tan(X/2) and v =
√

1+µ
1−µu we have

T (0) =
1

Ω

∫ ∞
−∞

1

1− µ 1−u2

1+u2

2 du

1 + u2
=

2

Ω
√

1− µ2

∫ ∞
−∞

dv

1 + v2
=

2

Ω
√

1− µ2
arctan(v)

∣∣∣∣∣
∞

−∞

=
2π

Ω

1√
1− µ2

>
2π

Ω
.

(3.15)
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3. Particle paths in linear water waves

Let now Yπ ∈ (0, β). If we call Yπ/2 the height of the intersection point of the trajectory with the line
X = π

2 , looking at Fig. 3.2 we see that for X ∈ (−π2 ,
π
2 ) the trajectory lies above the line Y = Yπ/2 while

for |X| > π
2 it lies below. Thus

dX

dt
= kM cosh(Y ) cos(X)− Ω ≥ kM cosh(Yπ/2) cos(X)− Ω

and as a consequence

T (Yπ) ≥
∫ −π
π

dX

kM cosh(Yπ/2) cos(X)− Ω
=

2π

Ω

1√
1− µ′2

>
2π

Ω
,

using the same technique as above, but now with µ′ =
kM cosh(Yπ/2)

Ω
> µ.

3.1.6 Physical interpretation

We had seen in §3.1.3 that in a first approximation, the particle paths were ellipses -and thus closed-.
However, we have proved that actually the trajectories of (3.4) are not periodic. A natural question to
be asked now is: what do they look like then? Looking at the system (3.9) we see that the trajectories
lying below the separatrix are periodic in the cylinder, because if we start a certain point (π, Yπ) -which
we can assume, doing a time-shift if necessary-, we will end at the same height in the point (−π, Yπ) after
a time T -thus justifying the nomenclature period function-. Interpreting X(t) as a phase and looking at
the system 3.4 we see that during this time four different behaviours appear:

X ∈ (π2 , π) X ∈ (0, π2 ) X ∈ (−π2 , 0) X ∈ (−π,−π2 )

dx

dt
< 0 > 0 > 0 < 0

dy

dt
> 0 > 0 < 0 < 0

Moreover, we have said that the initial and the final height are the same y(0) = y(T ), and in the
table we see that actually this is the minimum height. Regarding the horizontal dimension, the theorem
implies

x(T )− x(0) =
X(T )−X(0)

k
+

ΩT
k

= −2π

k
+

ΩT
k

> 0

so the trajectories in the system (3.4) must look like in Fig. 3.3. In particular, there is a net forward
drift, which is known as Stokes drift in the literature2.

Figure 3.3: Schematic representation of the actual particle paths in the system (3.4).

2see [4] and references therein.
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3. Particle paths in linear water waves

3.2 Deep-water waves

In this section we will deal with a similar case but we will think of h → ∞ (so δ → ∞, the deep-water
waves limit) and we will analyse what effects this change has on the particle paths.

3.2.1 Changes in the model

The set is now presented in Fig.3.4. We will now take b = 0 and think of a → −∞, h → ∞. Thus, the
fluid domain will now be

D := { (x, y) ∈ R2 | y ≤ η(x, t) }.
This has important consequences in our model, since the whole non-dimensionalisation and scaling of the
variables that we did in §2.3 was based on the assumption h < ∞. The general rule that we will apply
will be to take h = 1 in this changes. In particular, y remains unchanged and

u 7→ √
g u v 7→

√
g

λ
v t 7→ λ

√
g
t δ :=

1

λ
ε := C. (3.16)

λ

0
C

y = η(x, t)

y

x

Figure 3.4: Schematic scenario for deep-water waves.

3.2.2 Fluid velocity field

Proposition 3.12. The solution of the system (2.14) for irrotational deep water is

u(x, y, t) = 2πcδ exp(2πδy) cos [2π(x− ct)]
v(x, y, t) = 2πc exp(2πδy) sin [2π(x− ct)]
p(x, y, t) = 2πc2δ exp(2πδy) cos [2π(x− ct)]

(3.17)

where

c2 =
1

2πδ
.

Proof. The proof is essentially the same as in Proposition 3.1 but with different boundary conditions.
Starting with the equation (3.2):

F ′′(y)− (2πδ)2F (y) = 0,

and its general solution F (y) = C1 exp(2πδy)+C2 exp(−2πδy), we must now impose that F (y)→ 0 when
y → −∞, which implies C2 = 0. From v = ηt on y = 0 we get

C1 sin[2π(x− ct)] = 2πc sin[2π(x− ct)] −→ C1 = 2πc
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3. Particle paths in linear water waves

so
v(x, y, t) = 2πc exp(2πδy) sin [2π(x− ct)].

Now ux + vy = 0 implies

u(x, y, t) = −
∫
vy dx = −

∫
(2π)2cδ sin[2π(x− ct)] dx

= 2πcδ exp(2πδy) cos [2π(x− ct)].

and ut = −px implies:

p(x, y, t) = −
∫
ut dx = −

∫
(2πc)2δ exp(2πδy) sin[2π(x− ct)] dx

= 2πc2δ exp(2πδy) cos [2π(x− ct)].

From the boundary condition p = η on y = 0 we finally get

2πc2δ cos [2π(x− ct)] = cos[2π(x− ct)] −→ c2 =
1

2πδ
.

In a similar fashion as for finite-depth water:

Corollary 3.13. If we reverse the changes introduced in §3.16, the functions in (3.17) can be written as
η(x, t) = ε cos(kx− Ωt)

u(x, y, t) = εΩ exp(ky) cos(kx− Ωt)

v(x, y, t) = εΩ exp(ky) sin(kx− Ωt)

P (x, y, t) = Pat − gy + εg exp(ky) cos(kx− Ωt)

in terms of the physical variables, where

k = 2πδ =
2π

λ
Ω =

√
gk.

Corollary 3.14. The speed c of the linear wave is thus given by

c =
Ω

k
=

√
gλ

2π

and the period T by

T =
2π

ω
=

2π√
gk
.

As expected, we recover the limit δ → ∞ of 3.3, which corresponds to deep-water waves. Now the
dynamical system for the particle paths will be given by:

dx

dt
= M exp(ky) cos(kx− Ωt)

dy

dt
= M exp(ky) sin(kx− Ωt)

(3.18)

where M = εΩ.
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3.2.3 Classical particle paths

If we approximate the system (3.18) to first-order in M we get, in analogy to (3.6):
dx

dt
= M exp(ky0) cos(kx0 − Ωt) +O(M2)

dy

dt
= M exp(ky0) sin(kx0 − Ωt) +O(M2)

(3.19)

and neglecting the terms of second order or higher and integrating with respect to time we get
x(t) ' x0 −

M

Ω
exp(ky0) sin(kx0 − Ωt)

y(t) ' y0 +
M

Ω
exp(ky0) cos(kx0 − Ωt).

(3.20)

This equation correspond to a circle, so that for infinite depth the particle paths are circular to a first
approximation, of radius M

Ω exp(ky0) = ε exp(ky0). This should come as no surprise, since for the finite-
depth case the two semi-axis tended to be equal as y0 → +∞ because tanh(ky0)→ 1 when y0 → +∞. In
particular we see that the water in the surface (y = 0) describe circles of radius ε, which is the amplitude
of the wave η, and that these circles get smaller and smaller as we get deeper into the water, becoming
punctual in the limit y → −∞.

3.2.4 Main results

A. Constantin et al. applied also the variable change (3.8) to the system (3.18) (cf. [3]), giving out
the conjugated system 

dX

dt
= kM exp(Y ) cos(X)− Ω =: A(X,Y )

dY

dt
= kM exp(Y ) sin(X) =: B(X,Y ),

(3.21)

which is also Hamiltonian
H(X,Y ) = kM exp(Y ) cos(X)− ΩY.

Phase portrait

The phase portrait of (3.21) is very similar to the one of (3.9) (see Fig. 3.2). This time,

D := { (X,Y ) ∈ R2 | − π ≤ X ≤ π, Y ≤ 0 } = C1 × (−∞, 0],

the 0-isocline will be only the lines X = 0 and X = ±π and the ∞−isocline will be a curve of the form
(X, γ(X)) where X ∈ (−π/2, π/2) -since all the constants are again positive- and

γ(X) := log

(
Ω

kM cos(X)

)
, (3.22)

which also diverges to +∞ when X → ±π/2. That implies that if there is a singular point, it must be in
the line X = 0, so

0 = A(0, Y ∗) = kM exp(Y ∗)− Ω −→ Y ∗ = log

(
Ω

kM

)
= log

(
1

kε

)
.
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3. Particle paths in linear water waves

The Hessian matrix of H in this point P = (0, Y ∗) is

HH(P ) =

(
HXX HXY

HY X HY Y

)∣∣∣∣
P

= kM exp(Y )

(
− cos(X) − sin(X)
− sin(X) cos(X)

)∣∣∣∣
P

=

(
−Ω 0
0 Ω

)
,

so it is again non-degenerate and a saddle point by virtue of theorem 3.9. There will be also four
separatrices. As before, since we are only interested in the physically realistic trajectories, we must
assure that P lies above the water surface, that is

Y ≤ log

(
1

kε

)
−−−→
(3.8)

y ≤ k log

(
1

kε

)
−→ 1

kε
≤ log

(
1

kε

)
.

It is enough to impose

ε <
1

ke

since

kε <
1

e
< 1 = log(e) < log

(
1

kε

)
.

And finally, the main result of [3]:

Theorem 3.15. There are no periodic orbits in (3.18).

Proof. The lemma (3.10) depends only on the variable change (3.8), so it is also valid for infinite depth
water and thus it is enough to prove that, using the same notation as before,

T (Yπ) >
2π

Ω
∀Yπ ∈ (−∞, β),

where (π, β) is the intersection point of the lowest right separatrix and the line X = π. To show this we
will use a very similar reasoning as we did for the finite case. Given a Yπ ∈ (−∞, β), we call Yπ/2 the
height of the intersection point of the trajectory with the line X = π

2 , which is the same as that with the

line X = −π2 . Since dY
dt > 0 for X > 0 and dY

dt > 0 for Y < 0, we know that the trajectory lies above
Y = Yπ/2 for X ∈ (−π2 ,

π
2 ) and below for |X| > π

2 . As a consequence,

dX

dt
= kM exp(Y ) cos(X)− Ω ≥ kM exp(Yπ/2) cos(X)− Ω

so

T (Yπ) ≥
∫ −π
π

dX

kM exp(Yπ/2) cos(X)− Ω
=

∫ π

−π

dX

Ω− kM exp(Yπ/2) cos(X)
=

1

Ω

∫ π

−π

dX

1− µ cos(X)
=

2π

Ω

1√
1− µ2

>
2π

Ω

where the integral of (3.15) was used, provided that

µ :=
kM exp(Yπ/2)

Ω
<
kM

Ω
= kε <

1

e
< 1.

The physical interpretation done in §3.1.6 naturally applies also here, so the orbits will also look like
3.3, although more “circle-like” than “ellipse-like”.
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Chapter 4

Looking for closed paths

“A singular disadvantage of the sea lies in the fact that after
successfully surmounting one wave you discover that there is
another behind it just as important and just as nervously anx-
ious to do something effective in the way of swamping boats.”

Stephen Crane

This is the main chapter of the work and contains all the original results. It deals both with the
generalization of the systems we have already seen as well as with the possibility of having periodic orbits
in similar systems. The two models of irrotational waves have been shown to have similar properties.
We will see that they can be understood as particular cases of a more general model that has the same
properties. After that we will look for similar non-autonomous systems, which can be shown to have
periodic orbits. Three interesting examples will be given.

4.1 A general model for water waves

Looking at the dynamical systems describing the particle paths, both before (3.4), (3.18) and after (3.9),
(3.21) the variable change, it is not difficult to see that they share a common form. Moreover, after the
analysis of the phase portraits, we have concluded that both show a forward drift. At this point, the
most natural question to be risen is whether their common properties are consequence of their common
form, and therefore they can be thought as particular cases of a more general model. In this section we
will give a positive answer to this question.

4.1.1 Phase-portrait analysis

Let G : R→ R be a C2-function, fulfilling

• lim
Y→a+

G(Y ) = 0

• G′(Y ) > 0 ∀Y ∈ (a, b)

• G′′(Y ) > 0 ∀Y ∈ (a, b),
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4. Looking for closed paths

for some a, b which do need not to be finite.

We consider the following dynamical system
dx

dt
= M G′(ky) cos(kx− Ωt)

dy

dt
= M G(ky) sin(kx− Ωt),

(4.1)

where M , k and Ω are real positive constants with Ω > kM , as well as its conjugated system:
dX

dt
= kM G′(Y ) cos(X)− Ω := A(X,Y )

dY

dt
= kM G(Y ) sin(X) := B(X,Y )

(4.2)

which is also Hamiltonian:
H(X,Y ) = kM G(Y ) cos(X)− ΩY.

Both systems have existence and uniqueness of solutions. Whatismore,

Remark 4.1. If we make G(Y ) = sinh(Y ) for the finite-depth water case, or G(Y ) = exp(Y ) for the
deep-water case, we recover (3.4), (3.18) from (4.1) and (3.9), (3.21) from (4.2). We also see that in
both cases G(Y ) fulfils the required conditions.

Following this remark, we define the domain of (4.2) to be

D := { (X,Y ) ∈ R2 | − π ≤ X < π, a ≤ Y ≤ b } = C1 × [a, b],

so that it coincides with the two special cases. We do not include a or b if they are not finite. We also
note that

Remark 4.2. The proof of Lemma 3.10 depends only on the variable change and the properties of cos(X),
so it is also valid for (4.1) and (4.2).

Let us now do the phase portrait analysis of (4.2) as we did previously for the other systems.

0- and ∞-isoclines

The 0−isocline of (4.2) consists of the lines X = 0, X = ±π/2 and Y = a, if included, because this is
the only root of G in [a, b] due to its properties. The ∞−isocline is implicitly given by

kM G′(Y ) cos(X) = Ω.

As in the finite-depth case, this curve is only defined for X ∈ (−π/2, π/2) -G′(Y ) is always positive-.
Moreover, G′′(Y ) being also positive implies that G′(Y ) has a well-defined inverse on [a, b] and thus the
∞−isocline can be written as (X, γ(X)) for X ∈ (−π/2, π/2), where

γ(X) = G′
−1
(

Ω

kM cos(X)

)
. (4.3)

In particular, the curve diverges to Y →∞ when X → ±π/2 and is of class C2.
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4. Looking for closed paths

Singular points

The singular points will be given by the intersections of the isoclines that are in D. Let us start with
P0 = (0, γ(0)). We call γ0 := γ(0). If P0 is to be in the interior of D, then γ0 ∈ (a, b), and therefore
G(γ0), G′′(γ0) > 0. We now calculate the Hessian matrix of H at P0:

HH(P0) =

(
HXX HXY

HY X HY Y

)∣∣∣∣
P0

= kM

(
−G(Y ) cos(X) −G′(Y ) sin(X)
−G′(Y ) sin(X) G′′(Y ) cos(X)

)∣∣∣∣
P0

= kM

(
−G(γ0) 0

0 G′′(γ0)

)
,

so P0 is non-degenerate and by theorem 3.9 is a saddle point. Thus there will be four separatrices. Below
the lowest two, trajectories will go from X = π to X = −π.

Since ultimately we want system (4.2) to be applicable to the physical reality, we must exclude those
trajectories that diverge and keep only those ones going from X = −π to X = π, thus, P0 must lie above
D. Therefore, we must impose that the lowest separatrix lies also above D. In particular,

G′(b) <
Ω

kM

G′′(Y )>0−−−−−−→ G′(a) <
Ω

kM
. (4.4)

This second part also implies that there is no other singular point, that is, rejects possible intersections
between Y = a and (X, γ(X)).

4.1.2 Main result

As we did in the previous chapter, for every Yπ ∈ [a, b] we define the period function T = T (Yπ) as the
time needed for the solution of (4.2) with initial condition (π, Yπ) to reach X = −π. We will now prove
the main results of this section.

Theorem 4.3. There are no periodic orbits in (4.1).

Proof. Since lemma 3.10 applies, it suffices to prove that ∀Yπ ∈ [a, b], T (Yπ) > 2π/Ω. Let (X(t), Y (t))
be the solution of (4.2) that has as initial condition (π, Yπ). If the solution intersects the line X = π/2
at Y = Yπ/2 (and by symmetry also X = −π/2), from dY/dt = B(X,Y ) = kM G(Y ) sin(X) it is clear
that Y (t) lies above Y = Yπ/2 when X(t) ∈ (−π/2, π/2) and below when |X(t)| > π/2. This implies that

dX

dt
= kMG′(Y ) cos(X)− Ω ≥ kMG′(Yπ/2) cos(X)− Ω

and thus

T (Yπ) ≥
∫ −π
π

dX

kMG′(Yπ/2) cos(X)− Ω
=

∫ π

−π

dX

Ω− kMG′(Yπ/2) cos(X)
=

1

Ω

∫ π

−π

dX

1− µ cos(X)
=

2π

Ω

1√
1− µ2

>
2π

Ω

where the integral of (3.15) was used, provided that

µ :=
kM

Ω
G′(Yπ/2) <

kM

Ω
G′(γ0) =

kM

Ω

Ω

kM
= 1.

We may, however, go a little bit further in our study of the period function T and say that it is not
only bounded from below, but an increasing function -in [3] it is shown for the deep-water case, we extend
it for the general model-. In order to prove this, we must first recall a known result of measure theory
(see, for example, [11]):
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4. Looking for closed paths

Theorem 4.4 (Lebesgue’s bounded convergence). Let {Jn}n∈N be a sequence of real-valued measur-
able functions on a measure space (S,Σ, µ). Suppose that the sequence converges point-wise to a function
J and is dominated by some integrable function I in the sense that

|Jn(x)| ≤ I(x), ∀n ∈ N, ∀x ∈ S. (4.5)

Then J is integrable and

lim
n→∞

∫
S

Jn dµ =

∫
S

J dµ.

As a consequence

Theorem 4.5. The period T = T (Yπ) is an increasing function in (a, b).

Proof. Given Yπ ∈ (a, b) we have seen that

T (Yπ) =

∫ π

−π

dX

Ω− kMG′(Y ) cos(X)
= 2

∫ π

0

dX

Ω− kMG′(Y ) cos(X)
.

It is clear that T is a differentiable function. Thus, our goal is simply to show that T ′(Yπ) > 0. Let
Y nπ ↘ Yπ an arbitrary decreasing sequence of values of (a, b). Denote by Y n = Y n(t) the second
coordinate of the solution of (4.2) with initial condition (π, Y nπ ), which due to the Implicit Function
Theorem can be thought as Y n = Y n(X). Then,

T ′(Yπ) = lim
n→∞

T (Yπ)− T (Y nπ )

Yπ − Y nπ
=

lim
n→∞

2

Yπ − Y nπ

(∫ π

0

dX

Ω− kMG′(Y ) cos(X)
−
∫ π

0

dX

Ω− kMG′(Y n) cos(X)

)
=

lim
n→∞

2

Yπ − Y nπ

∫ π

0

Ω− kMG′(Y n) cos(X)− Ω + kMG′(Y ) cos(X)

[Ω− kMG′(Y ) cos(X)][Ω− kMG′(Y n) cos(X)]
dX =

2 lim
n→∞

∫ π

0

kM cos(X)

[Ω− kMG′(Y ) cos(X)][Ω− kMG′(Y n) cos(X)]

G′(Y )−G′(Y n)

Yπ − Y nπ
dX.

Since we are only interested in the sign of this limit, we can multiply its argument by a positive amount,
like (Yπ − Y nπ )/(Y − Y n), obtaining

2 lim
n→∞

∫ π

0

kM cos(X)

[Ω− kMG′(Y ) cos(X)][Ω− kMG′(Y n) cos(X)]

G′(Y )−G′(Y n)

Y − Y n
dX

=: 2 lim
n→∞

∫
Jn(X) dX.

We want to apply now theorem 4.4 to the functions Jn(X), but we must first find some dominating
integrable function I(X). Let X be fixed. Knowing that G′′(Y ) > 0 and is continuous ∀Y ∈ [a, b], as a
consequence of the mean value theorem

0 <
G′(Y )−G′(Y n)

Y − Y n
= G′′(Y n,

′
) ≤ G := max

Y ∈[a,b]
G′′(Y ),

where Y n,
′

is some value in [Y (X), Y n(X)] ⊆ [a, b]. We define

I(X) :=


kM

Ω− kMG′(Y ) cos(X)

1

Ω− kMG′(b)

1

G
if X ∈

(
0,
π

2

)
kM

Ω− kMG′(Y ) cos(X)

1

Ω

1

G
if X ∈

(π
2
, π
)
,
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4. Looking for closed paths

which is well-defined due to (4.4) and integrable -since it is continuous-. We check now that |Jn(X)| <
I(X). On the one hand, for X ∈ (0, π/2), cos(X) > 0 and Ω− kMG′(Y n) cos(X) > Ω− kMG′(b) > 0 so

|Jn(X)| = kM

Ω− kMG′(Y ) cos(X)

cos(X)

Ω− kMG′(Y n) cos(X)

G′(Y )−G′(Y n)

Y − Y n
<

<
kM

Ω− kMG′(Y ) cos(X)

1

Ω− kMG′(b)

1

G
= I(X).

On the other hand, for X ∈ (π/2, π), cos(X) < 0 and Ω− kMG′(Y n) cos(X) > Ω > 0 so

|Jn(X)| = kM

Ω− kMG′(Y ) cos(X)

| cos(X)|
Ω− kMG′(Y n) cos(X)

G′(Y )−G′(Y n)

Y − Y n
<

<
kM

Ω− kMG′(Y ) cos(X)

1

Ω

1

G
= I(X).

Finally, continuous dependence on initial conditions implies Yn(X)↘ Y (x) so (4.1.2) is equal to

2

∫ π

0

kM cos(X)

[Ω− kMG′(Y ) cos(X)]2
lim
n→∞

G′(Y )−G′(Y n)

Y − Y n
dX = 2

∫ π

0

kM cos(X)G′′(Y )

[Ω− kMG′(Y ) cos(X)]2
=

2

∫ π/2

0

kM cos(X)G′′(Y )

[Ω− kMG′(Y ) cos(X)]2
+ 2

∫ π

π/2

kM cos(X)G′′(Y )

[Ω− kMG′(Y ) cos(X)]2
≥

2

∫ π/2

0

kM cos(X)G′′(Yπ/2)

[Ω− kMG′(Y ) cos(X)]2
+ 2

∫ π

π/2

kM cos(X)G′′(Yπ/2)

[Ω− kMG′(Y ) cos(X)]2
>

2kMG′′(Yπ/2)

(∫ π/2

0

cos(X)

Ω2
dX +

∫ π

π/2

cos(X)

Ω2
dX

)
= 0.

In Fig. 4.1 we can see the period function T for the finite-depth function G(Y ) = sinh(Y ).

Figure 4.1: Numerical approximation of the period function T = T (Yπ) (red) using Maple R©. The green line

represents the value 2π/Ω. In this example Ω = 9.
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4. Looking for closed paths

4.2 Some modified systems

So far we have seen that the equations of motion of the particle paths in irrotational linear water waves,
as well as for its more general model, have no periodic solution and its period function is increasing.
However, we may now wonder -for purely mathematical purposes- whether it is possible to modify (4.1)
in some way so that it does have periodic orbits, or a qualitatively different period function. We see that
(4.1) is of the form 

dx

dt
= M G′(ky)F (kx− Ωt)

dy

dt
= M G(ky)F ′(kx− Ωt),

(4.6)

where F (x) = cos(x) is a 2π−periodic function. A natural way to proceed is to consider either functions
G(Y ) with slightly different conditions than the ones stated at the beginning of §4.1.1, or periodic func-
tions F (X) other than cos(X).

In this section three examples of such modifications will be given: the first, somewhat trivial, with
a constant period function although with no periodic orbits, the second, more elaborated, for which
existence of periodic orbits has been proven, and the third, a combination of the previous two, which
leads to a whole set of periodic orbits.

4.2.1 A case of constant period function

The first example takes exactly the same form of (4.1), (4.2) but allowing G′′(Y ) = 0, so that G(Y ) = Y
can be chosen. If we want the first condition on G to be fulfilled, we must set a = 0. Our conjugated
systems will be 

dx

dt
= M cos(kx− Ωt)

dy

dt
= kMy sin(kx− Ωt),

(4.7)

and 
dX

dt
= kM cos(X)− Ω := A(X,Y )

dY

dt
= kM Y sin(X) := B(X,Y )

(4.8)

which is also Hamiltonian:

H(X,Y ) = kM Y cos(X)− ΩY = (kM cos(X)− Ω)Y.

The phase portrait analysis of this system is easy to do. In first place, we see that the 0-isocline is
formed, as in the previous section, by the lines X = 0, X = ±π/2 and Y = 0. The main difference
is in the ∞−isocline, that now does not depend on Y , and are the lines X = arccos(Ω/kM), which of
course only exist if Ω ≤ kM . However, if the ∞−isocline contains vertical lines, these are going to be
invariant manifolds ([6]) and in that case no trajectory would go from X = π to X = −π. All would
diverge. Therefore, we must impose µ := Ω/kM < 1. In that case, no singular points are to be found.
Whatismore, since B(X,Y ) = B(X), the period function can be explicitly calculated

T (Yπ) =

∫ π

−π

dX

Ω− kM cos(X)
=

1

Ω

∫ π

−π

dX

1− µ cos(X)
=

1

Ω

2π√
1− µ2

,

which is independent of Yπ and greater than 2π/Ω, so by lemma 3.10 there are no periodic orbits of (4.7).
In Fig. 4.2 we can see the phase portrait of (4.8).
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4. Looking for closed paths

Figure 4.2: Phase portrait of system (4.8). All trajectories go from X = π to X = −π.

4.2.2 A perturbed system with periodic orbits

Another interesting case is when we perturb the system (4.2) with a parameter α ∈ (0, 1) so that
cos(X) 7→ cos(X)− α. In this case we will have

dx

dt
= M G′(ky) [cos(kx− Ωt)− α]

dy

dt
= M G(ky) sin(kx− Ωt),

(4.9)

and 
dX

dt
= kM G′(Y ) [cos(X)− α]− Ω := A(X,Y )

dY

dt
= kM G(Y ) sin(X) := B(X,Y )

(4.10)

which is also Hamiltonian:
H(X,Y ) = kM G(Y ) [cos(X)− α]− ΩY.

In this case we will impose a finite. The 0−isocline is the usual: the lines X = 0, X = ±π/2 and Y = a,
and the ∞−isocline will be given by a curve of the form (X, γ(X)), similar to (4.3) but this time defined
only for X ∈ (−Xα, Xα), being Xα = arccos(α) ≤ π/2, and given by

γ(X) = G′
−1
(

Ω

kM [cos(X)− α]

)
,

which diverges to Y →∞ when X → ±Xα.

Regarding the singular points, we have a similar situation to the one we had for system (4.2). We
first consider the point P0 = (0, γ(0)) = (0, γ0), where γ0 := γ(0). If P0 lies in the interior of D, then
γ0 ∈ (a, b), so G(γ0), G′′(γ0) > 0 and the Hessian matrix of H in P0 will be

HH(P0) =

(
HXX HXY

HY X HY Y

)∣∣∣∣
P0

= kM

(
−G(γ0) 0

0 G′′(γ0)[1− α]

)
,
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4. Looking for closed paths

so P0 is again non-degenerate and by theorem 3.9 is a saddle point. There will be four separatrices and
below the lowest two, trajectories will go from X = π to X = −π. Just as we did before, we leave this
point above our domain, so that

G′(a) < G′(b) <
Ω

kM(1− α)
. (4.11)

With this all other possible intersections between Y = a and (X, γ(X)) are rejected, so there are no other
singular points. All trajectories go now from X = π to X = −π.

Existence of periodic orbits

We can now give a condition for the existence of periodic orbits.

Theorem 4.6. If
α

1− α2
>
kMG′(a)

2Ω
, (4.12)

and b is large enough, then (4.10) has at least one periodic orbit.

Proof. A first observation to be made is that we can always find values of α fulfilling (4.12), because

lim
α→0+

α

1− α2
= 0 lim

α→1−

α

1− α2
= +∞

and the function is continuous therein. In order to understand better the proof, we look at Fig. 4.3.

Figure 4.3: Phase portrait of system (4.9). As usual, the 0-isocline and∞−isocline are green and blue respectively,

and the separatrices are represented in red colour.

We see that as Yπ increases, the trajectories get closer to the separatrix. Since the separatrix, un-
derstood as a trajectory, takes an infinite amount of time to get from X = π to X = 0, and the period
function T = T (Yπ) is a continuous function of Yπ, for large enough b the period will be arbitrarily long.

34



4. Looking for closed paths

However, if Yπ = a, then dY/dt = 0 and the trajectory is flat. Therefore, the period function in that
point can be computed explicitly

T (a) =

∫ π

−π

dX

Ω− kMG′(a)[cos(X)− α]
=

1

Ω + αkMG′(a)

∫ π

−π

dX

1− kMG′(a)

Ω + αkMG′(a)
cos(X)

=

1

Ω + αkMG′(a)

2π√
1−

(
kMG′(a)

Ω + αkMG′(a)

)2
=

2π√
[Ω + αkMG′(a)]2 − [kMG′(a)]2

=

2π√
Ω2 + 2ΩαkMG′(a) + (α2 − 1)k2M2G′2(a)

<
2π

Ω
,

where we used condition (4.12) in the last step. T is less that the amount required by lemma 3.10, so by
the continuity of T there must be a Yπ such that T (Yπ) = 2π/Ω and therefore correspond through the
variable change (3.8) to a periodic orbit of the system (4.9).

4.2.3 Mixing the two systems

In the first particular case we have seen a system for which the period function was constant, although
no periodic orbits were to be found. In the second, existence of periodic orbits was shown, although not
much was known about the period function. These findings suggest a new system, for which the period
function will also be constant, and with the value required by lemma 3.10, so that all the orbits are
periodic.

Let us consider the systems 
dx

dt
= M [cos(kx− Ωt)− α]

dy

dt
= M k y sin(kx− Ωt),

(4.13)

and 
dX

dt
= kM [cos(X)− α]− Ω := A(X,Y )

dY

dt
= kM Y sin(X) := B(X,Y )

(4.14)

which is also Hamiltonian:

H(X,Y ) = kM Y [cos(X)− α]− ΩY = {kM [cos(X)− α]− Ω}Y.

These systems are very similar to the ones we dealt with in §4.2.1. We must set a = 0. The 0-isocline
is again the lines X = 0, X = ±π and Y = a = 0, while the ∞−isocline, again independent of Y , are the
vertical lines

X = ± arccos

(
Ω + αkM

kM

)
,

again an invariant manifold. Since we do not want these lines to exist, we must impose

1

µ
:=

Ω + αkM

kM
> 1. (4.15)

If the ∞−isocline does not exist, then there will be no singular points: all trajectories of (4.14) will
go from X = π to X = −π in finite time (qualitatively is the same as in §4.2.1 so we can also look at
Fig. 4.2). Actually we have,
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4. Looking for closed paths

Theorem 4.7. If

α

1− α2
=
kM

2Ω
or equivalently α =

√
1 + 4β2

2β
, β :=

kM

2Ω
, (4.16)

then all trajectories of system (4.13) are periodic.

Proof. The period function T (Yπ) of system (4.14) can be calculated explicitly from its first equation:

T (Yπ) =

∫ π

−π

dX

Ω− kM [cos(X)− α]
=

∫ π

−π

dX

Ω− kM [cos(X)− α]
=

1

Ω− αkM

∫ π

−π

dX

1− µ cos(X)
=

1

Ω− αkM
2π√

1−
(

kM

Ω− αkM

)2
=

2π√
Ω2 + 2ΩαkM − (1− α2)k2M2

=
2π

Ω
,

where condition (4.15) was used in the last step. This amount is independent of Yπ, and by lemma 3.10
correspond to periodic trajectories or closed paths of system (4.13) through the variable change (3.8).

Other possibilities

In this section we only considered systems of the form (4.6). However, the variable change (3.8) can
be also used with other kinds of systems, which may have periodic orbits too. For example, in [7] M.
Ehrnström and G. Villari study linear gravitational water waves with constant vorticity and get the
system 

dx

dt
= M cosh(ky) cos(kx− Ωt)− ωy

dy

dt
= M sinh(ky) sin(kx− Ωt),

(4.17)

where ω is the vorticity. They show that for positive and large enough ω the system has periodic orbits
indeed. The study of possible modifications of the vorticity model could lead to another work similar to
the present.

36



Bibliography

[1] D. J. Acheson, Elementary Fluid Dynamics, Clarendon Press, Oxford, (1990).

[2] C. Camacho, A. L. Neto, Teoria Geométrica das Folheações, Projeto Euclides, IMPA-CNPq, Brasilia,
(1979).

[3] A. Constantin, M. Ehrnström, G. Villari, Particle trajectories in linear deep-water waves, Nonlinear
Anal. Real World Appl. 9 (2008), no. 4, 1336-1344.

[4] A. Constantin, G. Villari, Particle trajectories in linear water waves, J. Math. Fluid Mech. 10 (2008),
no. 1, 1-18.

[5] A. Constantin, R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the
classical governing equations for water waves, J. Nonlinear Math. Phys. 15 (2008), suppl. 2, 58-73.

[6] F. Dumortier, J. Llibre, J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag
Berlin Heidelberg, (2006).

[7] M. Ehrnström, G. Villari, Linear water waves with vorticity: rotational features and particle paths, J.
Differential Equations 244 (2008), no. 8, 1888-1909.

[8] M. Ehrnström, G. Villari, Recent progress on particle trajectories in steady water waves, Discrete Contin.
Dyn. Syst. Ser. B 12 (2009), no. 3, 539-559.

[9] A. Geyer, On some aspects of tsunami waves, Diplomarbeit, Vienna University, Vienna (2010).

[10] R. S. Johnson, Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge (1997)

[11] A. Klenke, Wahrscheinlichkeitstheorie, Springer-Verlag Berlin Heidelberg (2006).

[12] P. K. Kundu, Fluid Mechanics, Academic Press, San Diego, (1990).

[13] T. Levi-Civita, What are waves?, Rice Inst. Pamphlet 25 (1938), 168–205.

[14] J. Lighthill, Waves in fluids, Cambridge Mathematical Library, Cambridge University Press, Cambridge
(1978).

[15] R. Mart́ınez i Barchino, Models amb Equacions Diferencials, Materials UAB, 149, Bellaterra, (2004).

[16] L. M. Milne-Thomson, Theoretical Hydrodynamics, The Macmillan, New York, (1938).

[17] G. G. Stokes, Mathematical and Physical papers, Volume 1, Cambridge Library Collection, New York, (2009).

[18] J. Sotomayor, Lições de Equações Diferenciais Ordinárias, Projeto Euclides, IMPA-CNPq, Rio de Janeiro,
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Resum del Treball en Català

Les ones són un dels fenòmens més estudiats tant dins de les matemàtiques com de la f́ısica. És ben
sabut que si llancem una pedra dins d’un llac, o mirem les onades del mar des de la platja, allò que veiem
moure’s no és pas l’aigua, contràriament a la nostra primera impressió, sinó un patró, una pertorbació
que es trasllada a través d’ella. Dit d’una altra manera, el moviment ràpid de les ones és el producte
d’un moviment molt més lent de la substància a través de la qual es transmet.

En aquest treball considerem únicament ones gravitacionals d’aigua, és a dir, les ones que es formen
a l’aigua sota una força gravitatòria constant. Com a punt de partida presentem les hipòtesis generals
de la f́ısica de fluids i dedüım les equacions del moviment d’Euler per a fluids sense viscositat, aix́ı com
l’equació de conservació de la massa. Seguidament afegim unes condicions de contorn convenients per a
l’estudi d’ones d’aigua i fem una adimensionalització per a una major comoditat en el tractament ma-
temàtic. Després apliquem un canvi d’escala per a restringir-nos al règim d’ones lineals, és a dir, aquelles
per a les quals el paràmetre d’amplitud -és a dir, el quocient de l’amplada de les ones per la profunditat
de l’aigua- és petit.

Ens interessen únicament solucions viatgeres, és a dir, solucions en què la dependència espai-temporal
és de la forma x − ct, on c és la velocitat de propagació de l’ona. Imposant aquesta condició trobem
una forma expĺıcita per al camp de velocitats del fluid u(x, t). Tot i que des del punt de vista de la
hidrodinàmica podŕıem considerar que amb això ja hem acabat la descripció de l’estat del fluid, hi ha
certes qüestions que no queden plenament resoltes. Una d’elles és si les trajectòries de les part́ıcules del
fluid, és a dir, les solucions de l’equació ẋ = u(x, t) són tancades o no.

Aquesta equació és, de fet, un sistema completament no lineal i no autònom d’equacions diferencials,
per al qual no disposem de solucions expĺıcites -almenys sota la hipòtesi d’irrotacionalitat-. L’enfocament
clàssic a aquest problema -que podem trobar a la majoria de llibres de mecànica de fluids- consisteix a
linealitzar les equacions, obtenint com a solució trajectòries el·ĺıptiques en el cas de profunditat finita, o
circulars en el cas d’aigües profundes, és a dir, trajectòries tancades. No obstant això, G. G. Stokes ja
va observar l’any 1847 que:

“Sembla que el moviment cap endavant de les part́ıcules no és completament compensat pel
moviment cap enrere; de manera que, a part del seu moviment oscil·latori, les part́ıcules pre-
senten un moviment progressiu en la direcció de propagació de les ones.”

En els darrers anys s’han publicat diversos avenços en aquest tema de la mà d’A. Constantin et. al.
i que donen la raó a Stokes, és a dir, que hi ha efectivament un desplaçament net cap endavant -seguint
la direcció de propagació de les ones-, que anomenem deriva de Stokes (de l’anglès Stokes drift). Aquests
resultats es basen en un ocurrent canvi de variables que transforma el sistema d’equacions en autònom -i
de fet Hamiltonià-, de manera que les eines de l’anàlisi de retrats de fase i de corbes impĺıcites es posen al
nostre abast. El nou sistema té un espai de fase ciĺındric, per al qual totes les òrbites són periòdiques -al
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voltant del cilindre-. Aix́ı doncs, podem definir-hi una funció de peŕıode, que per a cada condició inicial
ens digui el temps que triga en donar una volta. Es demostra que les òrbites del primer sistema seran
tancades si i només si la funció peŕıode coincideix amb una certa cota. Finalment, es prova que aquesta
cota no s’assoleix mai.

En aquest treball presentem i comentem aquests resultats per al cas d’aigua irrotacional, tant per a
profunditat finita com per a aigües profundes. A continuació incloem un caṕıtol amb el treball original,
que dividim en dues parts. A la primera veiem que els resultats similars que s’obtenen per a les dues
profunditats es poden entendre com a casos particulars d’un model més general, per al qual extenem
els resultats de no existència d’òrbites periòdiques, aix́ı com de monotonia de la funció peŕıode. A la
segona intentem trobar sistemes no autònoms similars per als quals, usant la mateixa tècnica, poguem
provar que tenen òrbites periòdiques. Donem tres exemples: un amb funció de peŕıode constant però per
sobre de la cota, un altre que assoleix la cota però té una funció de peŕıode no constant, i finalment un
amb funció de peŕıode constant i que coincideix amb la cota, de manera que totes les seves òrbites són
periòdiques.
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Resumen del Trabajo en Español

Las ondas son uno de los fenómenos más estudiados tanto dentro de las matemáticas como de la f́ısica. Es
bien sabido que si lanzamos una piedra en un lago, o miramos las olas del mar desde la playa, lo que vemos
moverse no es el agua, contrariamente a nuestra primera impresión, sino un patrón, una perturbación
que se traslada a través del agua. Dicho de otra forma, el rápido movimiento de las ondas es el producto
de un movimiento mucho más lento de la substancia a través de la cual se transmite.

En este trabajo consideramos únicamente ondas gravitacionales de agua, es decir, ondas que se for-
man en el agua bajo una fuerza gravitatoria constante. Como punto de partida presentamos las hipótesis
generales de la f́ısica de fluidos y deducimos las ecuaciones del movimiento de Euler para fluidos sin
viscosidad, aśı como la ecuación de conservación de la masa. Seguidamente añadimos unas convenientes
condiciones de contorno para el estudio de ondas de agua y realizamos una adimensionalización para ma-
yor comodidad en el tratamiento matemático. Después aplicamos un cambio de escala para restringirnos
al régimen de ondas lineales, es decir, aquellas cuyo parámetro de amplitud -el cociente de la amplitud
de las ondas por la profundidad del agua- es pequeño.

Nos interesan únicamente soluciones viajeras, es decir, soluciones cuya dependencia espacio-temporal
es de la forma x − ct, donde c es la velocidad de propagación de la onda. Imponiendo esta condición
hallamos una forma expĺıcita del campo de velocidades del fluido u(x, t). Aunque desde el punto de vista
de la hidrodinámica podŕıamos considerar que con esto ya hemos acabado la descripción del fluido, hay
ciertas cuestiones que no quedan plenamente resueltas. Una de ellas es si las trayectorias de las part́ıculas
del fluido, es decir, las soluciones de la ecuación ẋ = u(x, t), son cerradas o no.

Esta ecuación es, de hecho, un sistema completamente no lineal y no autónomo de ecuaciones diferen-
ciales, para el cual no disponemos de soluciones expĺıcitas -al menos bajo hipótesis de irrotacionalidad-.
El enfoque clásico para este problema -que podemos encontrar en la mayoŕıa de libros de mecánica de
fluidos- consiste en linealizar las ecuaciones, obteniendo como solución trayectorias eĺıpticas en el caso de
profundidad finita, o circulares en el caso de aguas profundas, es decir, trayectorias cerradas. No obstante,
G. G. Stokes ya observó en 1847 que:

“Al parecer el movimiento hacia adelante de las part́ıculas no es totalmente compensado por el
movimiento hacia atrás; de manera que, a parte de su movimiento oscilatorio, las part́ıculas
presentan un movimiento progresivo en la dirección de propagación de las ondas.”

En los últimos años se han publicado varios avances en este tema de la mano de A. Constantin et.
al. y que dan la razón a Stokes, es decir, que hay efectivamente un desplazamiento neto hacia adelante
-siguiendo la dirección de propagación de las ondas-, que llamamos deriva de Stokes (del inglés Stokes
drift). Estos resultados se basan en un ocurrente cambio de variables que transforma el sistema de ecua-
ciones en autónomo -y de hecho Hamiltoniano-, de manera que las herramientas del análisis de retratos de
fase y de curvas impĺıcitas se ponen a nuestro abasto. El nuevo sistema tiene un espacio de fase ciĺındrico,
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para el cual todas las órbitas son periódicas -alrededor del cilindro-. Esto permite definir una función de
periodo que para cada condición inicial nos diga el tiempo que tarda en dar una vuelta. Se demuestra
que las órbitas del primer sistema seran cerradas si y solo si la función periodo coincide con cierto valor
cŕıtico. Finalmente se prueba que nunca se llega a este valor cŕıtico.

En este trabajo presentamos y comentamos estos resultados para el caso de agua irrotacional, tanto en
produndidad finita como en aguas profundas. Seguidamente incluimos un caṕıtulo que contiene el trabajo
original y que dividimos en dos partes. En la primera vemos que los resultados similares que se obtienen
para las dos profundidades se pueden entender como casos particulares de un modelo más general, para
el cual extendemos los resultados de no existencia de órbitas periódicas, aśı como la monotońıa de la
función periodo. En la segunda intentamos encontrar sistemas no autónomos similares para los cuales,
usando la misma técnica, podamos probar que tienen órbitas periódicas. Damos tres ejemplos: uno con
una función de periodo constante pero por sobre del valor cŕıtico, otra que llega al valor cŕıtico pero con
una función de periodo no constante, y finalmente una con función de periodo constante y que coincide
con el valor cŕıtico, de manera que todas sus órbitas son periódicas.
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Deutsche Zusammenfassung

Die Wellen gehören zu den Phänomenen, die sowohl in der Mathematik als auch in der Physik am mei-
sten studiert werden. Wenn wir einen Stein ins Meer werfen so wissen wir, dass die Bewegung, welche
wir sehen, nicht das Wasser selbst (im Gegensatz zu unserem ersten Eindruck), sondern eine sich durch
das Wasser bewegende Störung ist. Mit anderen Worten, die schnelle Wellenbewegung ist nichts anders
als das Produkt der viel langsameren Bewegung des Wassers.

In dieser Arbeit beschränken wir uns auf Wasserwellen, das heißt, Wellen die sich in Wasser unter Ein-
wirkung vom Schwerkraft bilden. An den Ausgangspunkt stellen wir die Hypothesen der Strömungsphysik
und leiten sowohl die Euler-Gleichungen als auch den Massenerhaltungssatz daraus her. Nachher stellen
wir passende Randbedingungen und machen das System dimensionslos -damit die mathematischer Hand-
lung einfacher ist-. Danach skalieren wir einige Variablen, um nur mit linearen Wellen zu arbeiten, das
heißt, dass der Amplitudeparameter -die Schwingungsweite durch die Wassertiefe- klein ist.

Wir fokussieren uns auf Reiselösungen, das sind, Lösungen, deren Raumzeitabhängigkeit der Form
x− ct sind, wo c die Wellengeschwindigkeit ist. Wenn wir das durchsetzen, finden wir das Geschwindig-
keitsfeld u(x, t) der Flüssigkeit explizit. Die Beschreibung des Flüssigkeitszustands ist aber damit noch
nicht vollständig, sondern einige Fragen bleiben unbeantwortet. Zum Beispiel, ob die Trajektorien der
Flüssigkeitsteilchen -die Lösungen der Gleichung ẋ = u(x, t)- geschlossen sind.

Diese Gleichung ist eigentlich ein nichtlineares zeitabhängiges Differenzialgleichungssystem und ex-
plizite Lösungen stehen nicht zur Verfügung -wenigstens wenn die Wirbelstärke verschwindet-. Der
gewöhnliche Ansatz -welcher in den meisten Büchern gefunden werden kann- besteht darin, das Glei-
chungssystem zu linearisieren. Damit bekommt man elliptische Trajektorien für eine endliche Tiefe, und
kreisförmige Trajektorien für Tiefwasser, die in beiden Fällen geschlossen sind. Nichtsdestoweniger, schon
im Jahr 1847 beobachtete G. G. Stokes:

,,Anscheinend wird die Vorwärtsbewegung der Teilchen nicht durch ihre Rückwärtsbewegung
völlig ausgegliechen; so dass die Teilchen eine fortschreitende Bewegung in der Ausbreitungs-
richtung zusätzlich zu der Schwingungsbewegung haben.”

In den letzten Jahren wurden einige Entwicklungen von A. Constantin u. a. veröffentlicht, die Sto-
kes Recht geben, das heißt, dass es tatsächlich eine Nettovorwärtsbewegung -in der Ausbreitungsrichtung-
gibt, welche Stokes Drift gennant wird. Das wird durch einen einfallsreichen Variablenwechsel bewiesen,
der das zeitabhängiges System autonom -und tatsächlich zu einem Hamiltonschen System- macht. Damit
stellt man die Möglichkeit zur Verfügung, nicht nur eine Phasenraumanalyse zu machen, sondern auch
Kurvengeometrie zu nutzen. Das neue System hat einen zylindrischen Phasenraum, wo alle Trajektorien
geschlossen um den Zylinder und periodisch sind. Damit lässt sich eine Periodenfunktion definieren. Man
kann beweisen, dass eine Trajektorie aus dem ersten System periodisch genau dann ist, wenn die Periode
der entsprechenden Trajektorie aus dem zweiten System ein bestimmtes Wert annimmt. Schließlich zeigt
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man, dass das niemals der Fall ist.

In dieser Arbeit sollen diese Ergebnisse für Wirbelstärkeloses Wasser vorgestellt und besprochen wer-
den; sowohl für endliche Tiefen als auch für Tiefwasser. Danach kommt die eigentliche Arbeit, die aus zwei
Teilen besteht: zuerst wird gezeigt, dass die ähnliche Ergebnisse, welche man in beiden Fällen bekommt,
als Sonderfälle eines allgemeinen Modells verstanden werden können, auf den die Ergebnisse ausgebreitet
werden. Im zweiten Teil versuchen wir, ähnliche zeitabhängige Differenzialgleichungssysteme zu finden,
für die die Existenz periodischer Trajektorien mit selben Technik bewiesen werden kann. Drei Beispiele
werden gegeben: eines, mit einer konstanten Periodenfunktion, das aber keine periodische Trajektorie
hat, eines, mit einer nichtkonstanten Periodenfunktion aber mit periodischen Trajektorien, und eines,
mit nur periodischen Trajektorien.
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